Chem. Ber. 114, 2644 - 2648 (1981)

Darstellung und Eigenschaften von $B(OTeF_5)_3$, $Cs[B(OTeF_5)_4]$ und $B(OTeF_5)_3 \cdot CH_3CN$

Holger Kropshofer, Ortwin Leitzke, Paul Peringer und Fritz Sladky*

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck

Eingegangen am 9. Februar 1981

Preparation and Properties of B(OTeF₅)₃, Cs[B(OTeF₅)₄], and B(OTeF₅)₃ · CH₃CN

Interaction of BCl₃ with HOTeF₅ affords B(OTeF₅)₃ (1) in quantitative yield. This compound reacts with CsOTeF₅ to give Cs[B(OTeF₅)₄] (2) and with acetonitrile to form the adduct B(OTeF₅)₃ · CH₃CN (3). Thermolysis of 1 above 130 °C leads to TeOF₄ which cannot be isolated, but dimerizes to 4 and polymerizes to $F_5Te[OTeF_4]_nOTeF_5$.

Seit unserer ersten Mitteilung über die Synthese von $B(OTeF_5)_3$ (1)¹⁾ hat sich diese Verbindung als eines der wichtigsten Reagentien zur Übertragung von F_5TeO -Gruppen auf andere Elemente erwiesen. In der Umsetzung mit AsF₃ konnten wir erstmals zeigen, daß $B(OTeF_5)_3$ in praktisch quantitativ verlaufender Reaktion Fluor gegen die F_5TeO -Gruppe austauscht¹⁾:

$$\begin{array}{rl} B(OTeF_5)_3 \ + \ AsF_3 \rightarrow As(OTeF_5)_3 \ + \ BF_3 \\ 1 \end{array}$$

Folgende Fluoride wurden daraufhin erfolgreich mit B(OTeF₅)₃ umgesetzt: HgF₂²⁾, MoF₆³⁾, WF₆⁴⁾, UF₆⁵⁾, SbF₅⁶⁾, IF₅⁷⁾, XeF₄⁸⁾, XeF₆ und XeOF₄⁹⁾.

Bor-tris[pentafluorotellurat(VI)] (1)

Bortrichlorid und Pentafluorotellursäure reagieren bereits ab -80 °C quantitativ zu 1 und HCl¹):

$$BCl_3 + 3 HOTeF_5 \rightarrow 1 + 3 HCl$$

1 hydrolysiert an feuchter Luft rasch zu $B(OH)_3$ und $HOTeF_5$ und ist sowohl in apolaren (CFCl₃) wie in polaren (Nitrobenzol) Lösungsmitteln gut löslich.

Nach Präzessionsaufnahmen gehört 1 dem PI₃-Strukturtyp an, in dem auch die höheren Bortrihalogenide kristallisieren¹⁰). Folgende Daten wurden an Einkristallen von 1 erhalten:

Hexagonale Raumgruppe $P6_3/m$ mit Z = 2, Gitterkonstanten: $a_1 \equiv a_2 = 9.20(1)$ Å, c = 9.19(1) Å $\alpha \equiv \beta = 90^\circ$, $\gamma = 120^\circ$ Dichte, exp. 3.62 gcm⁻³, ber. 3.58 gcm⁻³ Molekülsymmetrie: $\overline{6}$.

Cäsium-tetrakis[pentafluorotellurato(VI)]borat (2) und Bor-tris[pentafluorotellurat(VI)]-Acetonitril (1/1) (3)

Durch Umsetzung von 1 mit CsOTeF₅ oder CH₃CN kann die Koordinationszahl des Boratoms auf vier erhöht werden:

$$1 + CsOTeF_5 \rightarrow Cs[B(OTeF_5)_4] 2$$

1 + CH₃CN \rightarrow B(OTeF₅)₃ · CH₃CN 3

Das farblose Salz 2 ist ohne Ligandenaustausch in Acetonitril löslich. Das Lewis-Säure-Base Addukt 3 ist im Überschuß Acetonitril löslich, kann jedoch mit Frigen 113 ausgefällt werden.

Die Erhöhung der Koordinationszahl am Boratom kann gut durch die Verschiebung der BO-Valenzschwingung verfolgt werden. Während sie in 1 bei 1330 cm⁻¹ liegt, sinkt sie in 2 auf 975 und in 3 auf 960 cm⁻¹.

1, 2 und 3 wurden durch die ¹⁹F-, ¹²⁵Te- und ¹¹B-NMR-Spektren charakterisiert (Tab. 1). Im ¹⁹F-NMR-Spektrum zeigen alle Verbindungen das für die F₅TeO-Gruppe charakteristische AB₄-Spektrum. Auffallend ist die starke Beeinflussung des axialen Fluoratoms (FA) bei Erhöhung der Koordinationszahl am Boratom. Während FA in unkoordiniertem 1 bei höherem Feld liegt als die äquatorialen Fluoratome (F_B), erfolgt bei Koordination eine Spiegelung des gesamten Spektrums um die in etwa lagekonstanten F_B. Im ¹²⁵Te-NMR variieren die chemischen Verschiebungen δ_{Te} nur geringfügig. Unterschiede zwischen 1, 2 und 3 werden vorwiegend in den Te-F-Kopplungskonstanten beobachtet. Auch hier ist bei Erhöhung der Koordinationszahl am Boratom die Beeinflussung von $J(F_A-Te)$ ausgeprägter als für $J(F_B-Te)$. In unkoordiniertem 1 sind F_A und F_B gegenüber dem Tellur äquivalent. Dies führt zum Auftreten eines A₅X-Spinsystems. Im ¹¹B-NMR-Spektrum ergibt sich für 1 unerwartet eine höhere Abschirmung des Boratoms, verglichen mit etwa $B(OCH_3)_3$. Da zweifelsohne der F_5Te -Substituent elektronegativer ist als die CH_3 -Gruppe, muß die Erklärung hierfür in den wechselnden Kombinationen von o-Polarisierung und π -Akzeptorstärke des Boratoms gesucht werden¹¹). In 1 dürfte, abgesehen von möglichen Anisotropieeffekten, eine Erhöhung der π -Akzeptorstärke am Boratom durch den starken induktiven Effekt der F₅Te-Gruppen gegeben sein. Wird durch Vierfachkoordination die Möglichkeit zu π -Wechselwirkung reduziert, so ergibt sich der aus Elektronegativitätsüberlegungen erwartete Gang in den chemischen Verschiebungen für $[B(OTeF_5)_4]^-$ und $[B(OCH_3)_4]^-$ ($\delta_B = -21.4$).

		B(OTeF ₅) ₃ 1	$\frac{B(OTeF_5)_3 \cdot CH_3CN}{3}$	Cs[B(OTeF ₅) ₄] 2
¹⁹ F-NMR: AB ₄	$\delta_A{}^{a)}$ $\delta_B{}^{a)}$	- 48.2 - 44.4	- 42.0 - 45.5	- 39.6 - 46.0
	J _{AB} (Hz) R	181 0.84	183 0.93	184 0.51
¹²⁵ Te-NMR: AB ₄ X	δ ^{b)}	549	554	557
	J _{ATe} (Hz) J _{BTe} (Hz)	} 3659 ^{d)}	3440 3571	3330 3550
¹¹ B-NMR:	δ ^{c)}	-4.6	- 22.2	- 19.2
	J _{BTe} (Hz) W _t (Hz)	 190	- 40	23

Tab. 1. NMR-Daten von 1-3 (Lösungsmittel Frigen 113 (1), Acetonitril (2, 3))

^{a)} Rel. CFCl₃, Vorzeichen in Übereinstimmung mit den IUPAC Conventions, 1976. – ^{b)} Rel. (CH₃)₂Te. – ^{c)} Rel. B(OCH₃)₃. – ^{d)} A₅X-Spinsystem.

Chem. Ber. 114 (1981)

Weiters tritt bei Vierfachkoordination eine starke Reduzierung der Halbwertsbreiten $W_{1/2}$ der Borresonanz ein. Besonders ausgeprägt ist dies im symmetrischen koordinierten 2. Dadurch war es möglich, erstmals eine ¹¹B-¹²⁵Te-Kopplungskonstante von 23 Hz zu bestimmen. Die identische Kopplung tritt auch im ¹²⁵Te-NMR-Spektrum von 2 auf und führt zu einer Quartett-Aufspaltung aller Resonanzen des AB₄X-Spektrums.

Thermolyse von 1

1 ist bis 130 °C thermisch stabil. Dies ist unerwartet, da vergleichbare Verbindungen mit Fluor in β -Stellung zum Bor, wie etwa B(OCF₃)₃¹²), B(SCF₃)₃¹³⁾ oder B(OSO₂F)₃ bereits ab - 20 °C z. B. gemäß B(OCF₃)₃ \rightarrow 3 COF₂ + BF₃ zerfallen.

Wir untersuchten die Thermolyse von 1 im Temperaturbereich von 130 - 380 °C im Autoklaven und im Massenspektrometer. Der erste Zerfallsschritt ist die Bildung von Bortrifluorid und Telluroxidtetrafluorid, das allerdings als Monomeres nicht isolierbar ist. Es stabilisiert sich durch cyclische Dimerisierung und Polymerisierung:

Dabei tritt die Dimerisierungsreaktion zu Ditellurdioxidoctafluorid (4), das auch bei der Thermolyse von LiOTeF₅ erhalten wird¹⁴), gegenüber der Polymerisation deutlich zurück. Wie Thermolyseversuche im Massenspektrometer zeigen, ist die größte Bildungstendenz für 4 in der Gasphase und bei geringen Konzentrationen an OTeF₄ gegeben. Das Hauptprodukt der Thermolyse von 1 im Autoklaven ist jedoch das durch endständige F₅TeO-Gruppen abgesättigte, polymere Telluroxidtetrafluorid, F₅Te[OTeF₄]_nOTeF₅. Die niedrigsten Polymeren mit n = 0, F₅TeOTeF₅, und n = 1, TeF₄(OTeF₅)₂, wurden auch auf anderem Weg erhalten¹⁵⁻¹⁷⁾. Von den beiden möglichen Isomeren für n = 1 überwiegt dabei *cis*-TeF₄(OTeF₅)₂ gegenüber *trans*-F₄Te(OTeF₅)₂ im Verhältnis 9:1. Eine Auftrennung der Verbindungen mit höherem n gelingt nicht mehr. Nach Abtrennung der flüchtigen Komponenten verbleibt eine farblose, hochviskose Flüssigkeit, die glasig erstartt. Massenspektroskopisch können Bruchstück-Ionen bis m/e = 2000 beobachtet werden, entsprechend einem n von etwa 10. Thermolyse oberhalb 200°C führt zu einem allmählichen Abbau der Polymeren unter Bildung von F₅TeOTeF₅, TeF₆ und α -TeO₃. Ab 280°C beginnt auch Bis(pentafluortellur)oxid zu zerfallen, so daß bei 350°C die Thermolyse von 1 durch die folgende Reaktionsgleichung beschrieben wird:

$$1 \rightarrow BF_3 + 2 TeF_6 + TeO_3$$

Experimenteller Teil

¹¹B-, ¹⁹F- und ¹²⁵Te-NMR-Spektren: Geräte C-60 HL der Fa. Japan Electron Optics und WP-80 der Fa. Bruker. – Massenspektren: Gerät CH 7 der Fa. Varian. – Infrarot: Perkin-Elmer 337 und 457. – Raman: Gerät 52 der Fa. Coherent Radiation.

HOTeF₅ und CsOTeF₅ wurden nach Literaturmethoden^{18,2)} dargestellt.

Bor-tris[pentafluorotellurat(VI)] (1): Auf 4.68 g (39.9 mmol) BCl₃ werden 28.68 g (119.7 mmol) HOTeF₅ kondensiert. Man läßt bei -60 °C reagieren. Gebildetes HCl und mitgerissenes BCl₃ werden in einem Expansionsgefäß aufgefangen. HCl wird bei -90 °C von BCl₃ abgetrennt,

das in das Reaktionsgefäß zurückkondensiert wird, und obiger Vorgang mehrmals wiederholt. Aufschmelzen des Reaktionsproduktes bei 50°C und kurzes Abpumpen ergibt 27.0 g (37.2 mmol) 1 (93%), Schmp. 37°C. – IR (KBr, –195°C): 1330 s (v₃BO), 740 ss, 725 ss, 705 s (TeO, TeF), 615 m (v₂BO), 430 cm⁻¹ s (v₄BO). – Ein Ramanspektrum konnte wegen der Zersetzlichkeit von 1 im Laserstrahl nicht erhalten werden. – MS (70 eV): m/e = 734 (1%, M⁺), 493 (100, M⁺ – OTeF₅), 471 (6, BO₃Te₂F₈⁺), 249 (17, BO₂TeF₄⁺), 233 (100, BOTeF₄⁺) und zahlreiche F – Te – O-Bruchstücke. – Debye-Scherrer (Cu-K_α): 4.55, 4.07, 3.93, 2.66, 2.53, 2.28, 2.22, 2.14, 1.84, 1.829, 1.732, 1.701, 1.621, 1.529, 1.509 Å.

BF15O3Te3 (726.6) Ber. F 39.22 Te 52.68 Gef. F 39.34 Te 52.11

Cäsium-tetrakis[pentafluorotellurato(VI)]borat (2): Zu 3.2271 g (8.687 mmol) CsOTeF₅ wird in der Trockenbox die etwa eineinhalbfach molare Menge 1 gegeben. Nach Aufkondensieren des etwa vierfach molaren Überschusses an HOTeF₅ als Lösungsmittel wird im geschlossenen Reaktionsgefäß auf 75 °C erwärmt, wobei eine klare Lösung entsteht. Beim Abkühlen auf Raumtemp. fällt 2 aus. Nach Abpumpen von HOTeF₅ und überschüssigem 1 verbleiben 9.5398 g (8.688 mmol) 2 als farblose, kristallisierte Festsubstanz, Schmp. 120 °C. – Debye-Scherrer (Cu-K₀): 4.18, 3.95, 3.75, 3.33, 2.92, 2.78, 2.45, 2.32 Å. Vergleich der Pulverdiagramme von 2 mit CsOTeF₅ und 1 zeigt, daß die Ausgangsverbindungen vollständig zu 2 reagiert haben. – IR (KBr, Acetonitril): 975 s (v₃BO), 795 m, 720 ss, 675 cm⁻¹ s (TeO, TeF). – Raman (Festsubstanz): 1008 schw (v₃BO), 710 ss, 697 ss (TeO, TeF), 645 s (v₁BO), 495 m (v₄BO), 337 cm⁻¹ m (v₂BO). Im IR-Spektrum von 2 als Festsubstanz tritt eine Aufspaltung von v₃BO in 1020 und 950 cm⁻¹ ein, was auf eine Erniedrigung der Symmetrie des BO₄-Gerüstes von T_d auf D_{2d} gegenüber der Lösung hinweist¹⁹).

BCsF₂₀O₄Te₄ (1098.1) Ber. Cs 12.10 F 34.61 Te 46.48 Gef. Cs 12.00 F 34.81 Te 46.22

Bor-tris[pentafluorotellurat(VI)]-Acetonitril (1/1) (3): Auf 2.1238 g (2.923 mmol) 1 wird die etwa äquimolare Menge Acetonitril und Frigen 113 im Überschuß aufkondensiert. Man läßt anwärmen, wobei 3 als farblose, kristallisierte Festsubstanz ausfällt. Nach Vakuumfiltrieren, Waschen mit Frigen 113 und Trocknen i. Vak. Ausb. 2.2253 g (2.899 mmol, 99%), Schmp. 97°C.

 $\begin{array}{c} C_2H_3BF_{15}NO_3Te_3 \ (767.6) & Ber. \ C \ 3.13 \ H \ 0.39 \ F \ 37.12 \ N \ 1.82 \ Te \ 49.87 \\ & Gef. \ C \ 3.09 \ H \ 0.30 \ F \ 37.00 \ N \ 1.79 \ Te \ 49.60 \end{array}$

Thermolyse von 1: Jeweils neu eingewogenes 1 (etwa 50 mmol) wird in einem Monelautoklaven im Temperaturbereich von 100 bis 200 °C in 10 °C-Abständen zwischen 2 und 24 h erhitzt. Das gebildete BF₃ wird mittels *pVT*-Messung quantitativ bestimmt. Daraus ergibt sich 20% Thermolyse bei 130 °C, 60% bei 140 °C und 100% bei 160 °C für jeweils 24 h Zersetzungsdauer. Bei 160 °C und 2.5 h ist die Thermolyse zu 30%, bei 160 °C und 16 h zu 100% abgelaufen. Durch Destillation der verbleibenden Flüssigkeit wird F₅TeOTeF₅, Sdp. 59 °C (¹⁹F-NMR: AB₄, $\delta_A = 46.1$, $\delta_B = 38.0$, $J_{AB} = 188$ Hz), 4, Sdp. 76 °C (¹⁹F-NMR: A2B₂, $\delta_A = 51.2$, $\delta_B = 23.2$, $J_{AB} = 188$ Hz) und ein Gemisch aus *cis*-TeF₄(OTeF₅)₂ (¹⁹F-NMR: AB₄, $\delta_A = 51.3$, $\delta_B = 40.1$, $J_{AB} = 184$ Hz, A_2B_2 , $\delta_A = 27.4$, $\delta_B = 35.6$, $J_{AB} = 175$ Hz) und *trans*-TeF₄(OTeF₅)₂ (¹⁹F-NMR: Singulett bei 20.3) erhalten. Die Massenspektren dieser Verbindungen sind im oberen Massenbereich durchwegs durch ein Zerfallsschema M⁺, M⁺ - F, M⁺ - 3F, M⁺ - 5F charakterisiert. Der Destillationsrückstand enthält F₅Te[OTeF₄]_nOTeF₅ (IR, Flüssigkeitsfilm: 850 sst, breit, 740 sst, 715 sst, 695 s, 470 m cm⁻¹).

- ¹⁾ ^{1a)} F. Sladky, H. Kropshofer und O. Leitzke, J. Chem. Soc., Chem. Commun. 1973, 134. –
 ^{1b)} O. Leitzke, Inanguraldissertation, Univ. Innsbruck 1973. –
 ^{1c)} F. Sladky, H. Kropshofer, O. Leitzke und K. Schröder, XXIV th IUPAC Congress, Hamburg 1973.
- ²⁾ F. Sladky, H. Kropshofer, O. Leitzke und P. Peringer, J. Inorg. Nucl. Chem., H. H. Hyman, Memorial Volume, Supplement 1976, 69.
- ³⁾ K. Schröder und F. Sladky, Z. Anorg. Allg. Chem., im Druck.
- 4) O. Leitzke und F. Sladky, Z. Anorg. Allg. Chem., im Druck.
- ⁵⁾ K. Seppelt, Chem. Ber. 109, 1046 (1976).
- ⁶⁾ O. Leitzke und F. Sladky, Z. Naturforsch., Teil B, 36 b, 268 (1981).
- ⁷⁾ D. Lentz und K. Seppelt, Angew. Chem. **90**, 390 (1978); Angew. Chem., Int. Ed. Engl. **17**, 355 (1978).
- ⁸⁾ D. Lentz und K. Seppelt, Angew. Chem. **90**, 391 (1978); Angew. Chem., Int. Ed. Engl. **17**, 356 (1978).
- ⁹⁾ D. Lentz und K. Seppelt, Angew. Chem. **91**, 68 (1979); Angew. Chem., Int. Ed. Engl. **18**, 66 (1979).
- ¹⁰⁾ R. W. G. Wyckhoff, Crystal Structures, 2. Aufl., S. 70, Interscience Publishers, New York 1964.
- ¹¹⁾ H. Nöth und B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, S. 16, Springer-Verlag, Berlin 1978.
- ¹²⁾ D. E. Young, L. R. Anderson und W. B. Fox, Inorg. Chem. 10, 2810 (1971).
- ¹³⁾ A. Haas und M. Häberlein, Chem.-Ztg. 96, 412 (1972).
- 14) K. Seppelt, Angew. Chem. 86, 104 (1974); Angew. Chem., Int. Ed. Engl. 13, 92 (1974).
- ¹⁵⁾ A. Engelbrecht, W. Loreck und W. Nehoda, Z. Anorg. Allg. Chem. 360, 88 (1968).
- ¹⁶⁾ R. Campbell und P. L. Robinson, J. Chem. Soc. 1956, 3454.
- ¹⁷⁾ D. Lentz, H. Pritzkow und K. Seppelt, Inorg. Chem. 17, 1926 (1978).
- 18) A. Engelbrecht und F. Sladky, Monatsh. Chem. 96, 159 (1965).
- ¹⁹⁾ E. Funck, Ber. Bunsenges. Phys. Chem. 71, 170 (1967).

[41/81]